REFERENCES
Literature Cited
Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and soil, 337(1), 1-18.
Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental pollution, 158(6), 2282-2287.
Crippa, M., Guizzardi, D., Pisoni, E., et al. (2021). Global anthropogenic emissions in urban areas: patterns, trends, and challenges. Environmental Research Letters, 16(7), 074033.
Crill, P. M., & Thornton, B. F. (2017). Whither methane in the IPCC process? Nature Climate Change, 7(10), 678-680.
Gao, J., & O’Neill, B. C. (2020). Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nature Communications, 11(1), 1-12.
Gezahegn, S., Sain, M., & Thomas, S. C. (2019). Variation in feedstock wood chemistry strongly influences biochar liming potential. Soil Systems, 3(2), 26.
Halim, M. A., Vantellingen, J., Gorgolewski, A. S., Rose, W. K., Drake, J. A., Margolis, L., & Thomas, S. C. (2022). Greenhouse gases and green roofs: carbon dioxide and methane fluxes in relation to substrate characteristics. Urban Ecosystems, 25(2), 487-498.
He, Y., Zhou, X., Jiang, L., et al. (2017). Effects of biochar application on soil greenhouse gas fluxes: A meta‐analysis. GCB Bioenergy, 9(4), 743-755.
Jeffery, S., Verheijen, F. G., Kammann, C., & Abalos, D. (2016). Biochar effects on methane emissions from soils: a meta-analysis. Soil Biology and Biochemistry, 101, 251-258.
Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., ... & Lehmann, J. (2021). How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731-1764.
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In Biochar for Environmental Management (pp. 1-13). Routledge.
Lehmann, J., Cowie, A., Masiello, C. A., Kammann, C., Woolf, D., Amonette, J. E., ... & Whitman, T. (2021). Biochar in climate change mitigation. Nature Geoscience, 14(12), 883-892.
Li, Y., Hu, S., Chen, J., Müller, K., Li, Y., Fu, W., ... & Wang, H. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 18(2), 546-563.
Livesley, S. J., McPherson, E. G., & Calfapietra, C. (2016). The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, 45(1), 119-124.
Nisbet, E. G., Fisher, R. E., Lowry, D., et al. (2020). Methane mitigation: Methods to reduce emissions, on the path to the Paris Agreement. Reviews of Geophysics, 58(1), e2019RG000675.
Plant, G., Kort, E. A., Murray, L. T., Maasakkers, J. D., & Aben, I. (2022). Evaluating urban methane emissions from space using TROPOMI methane and carbon monoxide observations. Remote Sensing of Environment, 268, 112756.
Rees, F., Simonnot, M. O., & Morel, J. L. (2014). Short‐term effects of biochar on soil heavy metal mobility are controlled by intra‐particle diffusion and soil pH increase. European Journal of Soil Science, 65(1), 149-161.
Saunois, M., Stavert, A. R., Poulter, B., et al. (2020). The global methane budget 2000–2017. Earth System Science Data, 12(3), 1561-1623.
Scharenbroch, B. C., Meza, E. N., Catania, M., & Fite, K. (2013). Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. Journal of Environmental Quality, 42(5), 1372-1385.
Sifton, M. A., Lim, P., Smith, S. M., & Thomas, S. C. (2022). Interactive effects of biochar and Nfixing companion plants on growth and physiology of Acer saccharinum. Urban Forestry & Urban Greening, 74, 127652.
Singh, E., Mishra, R., Kumar, A., Shukla S.K., Lo, S.L., Kumar, S. (2022). Circular economy-based environmental management using biochar: Driving towards sustainability. Process Safety and Environmental Protection, 163, 585-600.
Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22(3), 1315-1324.
Somerville, P. D., Farrell, C., May, P. B., & Livesley, S. J. (2020). Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Science of the Total Environment, 706, 135736.
Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon management, 1(2), 289-303.
Teemusk, A., Kull, A., Kanal, A., & Mander, Ü. (2019). Environmental factors affecting greenhouse gas fluxes of green roofs in temperate zone. Science of the Total Environment, 694, 133699.
Thomas, S. C., Frye, S., Gale, N., et al. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, 129, 62-68.
Thomas, S. C., & Gale, N. (2015). Biochar and forest restoration: a review and meta-analysis of tree growth responses. New Forests, 46(5), 931-946.
Werner, C., Lucht, W., Gerten, D., & Kammann, C. (2022). Potential of Land‐Neutral Negative Emissions Through Biochar Sequestration. Earth's Future, 10(7), e2021EF002583.
World Bank (2022). World Bank DataBank. https://data.worldbank.org.
Ziter, C. D., Pedersen, E. J., Kucharik, C. J., & Turner, M. G. (2019). Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences, 116(15), 7575-7580.